

Estimating the Societal Benefits of Carbon Dioxide Sequestration through Peatland Restoration

Emily Pindilli, Rachel Sleeter, Dianna Hogan

A Community on Ecosystem Services December 2018

> U.S. Department of the Interior U.S. Geological Survey

Great Dismal Swamp Project

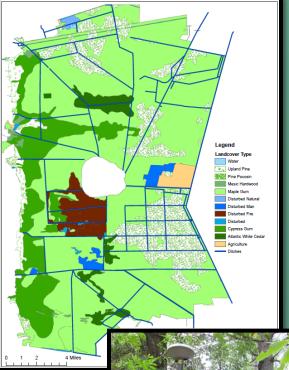
Background

Application of USGS LandCarbon

Produce regional- and local-scale C estimates (fluxes, ecosystem balance, and long-term sequestration rate) to include in ecosystem service evaluations in support of DOI land management

Multi-partner project

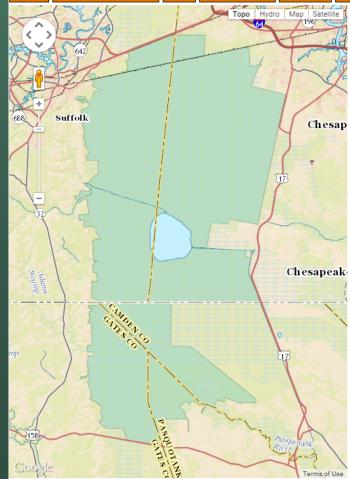
FWS; TNC; USGS; George Mason, Southern Methodist, and Clemson Universities



Great Dismal Swamp Project

Estimate local-scale C storage and flux:

- Carbon and hydrologic research: sequestration and peat storage, CO₂ CH₄ flux, soil moisture, hydrology (groundwater, and carbon flux through water)
- Remote sensing: aboveground biomass (field verification), properties such as soil moisture and peat depth, and wildfire burn severity
- Assess ecosystem services in relation to selected management and restoration actions



http://www.usgs.gov/climate_landuse/lcs/great_dismal_swamp/default.asp

The Great Dismal Swamp Project

Home About the Project Data Publications Updates People

The Great Dismal Swamp Carbon Project

The purpose of The Great Dismal Swamp Carbon Project is to gain information on carbon balance at the swamp. Specifically, it is to understand how management and/or restoration could potentially increase carbon storage, understand the key controlling processes of carbon sequestration, and estimate effects of refuge hydrologic management on carbon sequestration, fire management, and selected vegetation communities.

Read more about our research activites that make up the Great Dismal Swamp project.

History of the Great Dismal Swamp ecosystems

Great Dismal Swamp is located in southern Virginia and northern North Carolina approximately 15-20 miles from the Atlantic coast, and includes over 112,900 acres of forested wetlands. In 1763, a company led by George Washington began draining and logging the swamp to provide fertile agricultural lands and valuable timber for building. These activities continued for centuries and greatly changed the swamp hydrology and habitat; there are now approximately 150 miles of ditches which control the hydrology in the swamp.

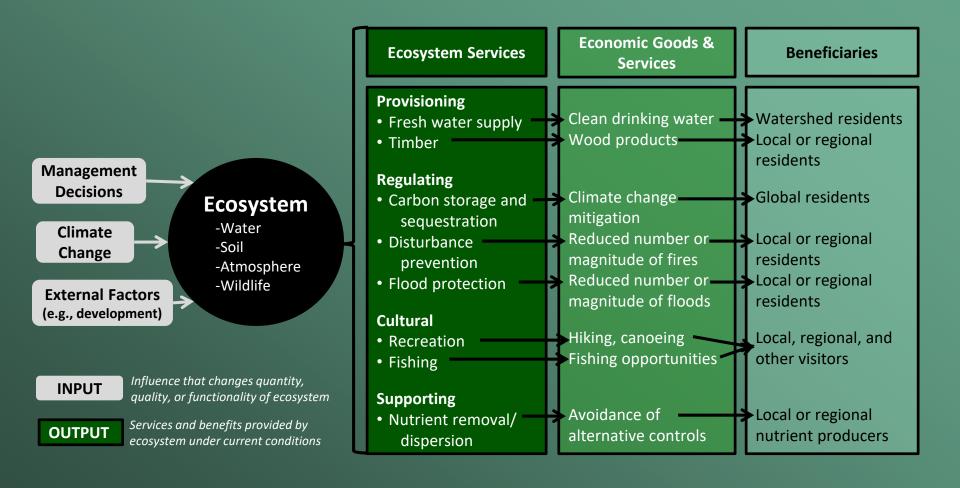
One of the greatest threats to the swamp today is wildfires. The frequency, severity, and intensity of wildfires have increased dramatically in recent years.

The ditches drain precipitation quickly, leading to a drier swamp. In addition, frequent and prolonged drought has significantly lowered the water table, leaving peat soils vulnerable to wildfire, soil subsidence, and oxidation of carbon.

Efforts to preserve the swamp begin in the mid-20th century, leading to the Dismal Swamp Act of 1974 which established the Great Dismal Swamp National Wildlife Refuge (GDS NWR). Ongoing preservation efforts continue to this day.

Collaborators

A project of USGS with collaborators from <u>George Mason University</u>, the <u>U.S. Fish and Wildlife Service</u>, and <u>The Nature Conservancy</u>, <u>Southern Methodist University</u>, and <u>Clemson University</u>,



Ecosystem Services Framework

Priority Ecosystem Services

Ecosystem Service	Rank
Biodiversity	1
Wildlife Viewing	2
Education	3
Nutrient Cycling	4
Flood Protection	5
Carbon Sequestration	6
Fire Mitigation	7
Recreation (biking, hiking, boating)	8
Cultural Heritage	9
Recreational Hunting	10
Aesthetic	11
Recreational Fishing	12
Timber	13
Fresh Drinking Water	14

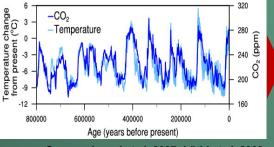
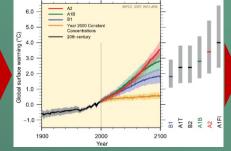

Carbon Sequestration Ecosystem Service Logic Flow

Photo Credit: USGS


Carbon sequestration:

- in vegetation
- in soil (peat)
- in water

Source: Jouzel et al. 2007; Lüthi et al. 2008

Lower atmospheric carbon

Source: IPCC 2007

Reduced climate change

Physical impacts include:

- higher air temps,
- increased ocean/freshwater temps,
- more frost-free days,
- more frequent heavy downpours,sea level rise,
- · less snow-cover,
- shrinking glaciers, and
- reduced sea ice (Melillo et al., 2014).

Reduced damages:

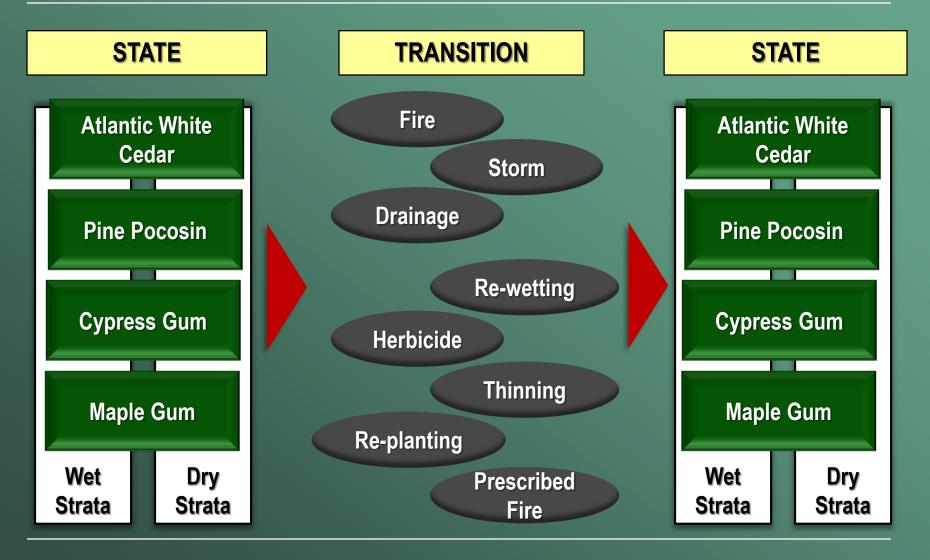
- health effects
- property damage
- loss of life
- loss of ecological functions
- lost agricultural yield (Tufts, 2017)

Methods Overview

Biological Sequestration

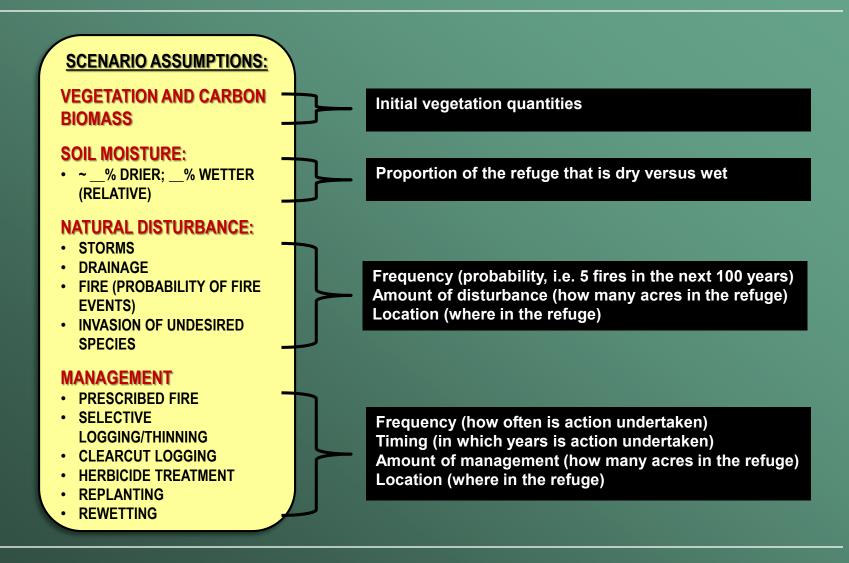
- LiDAR and field validation to derive above-ground biomass
- Extrapolated to entire refuge (45,000 hectares)
- Below ground biomass research still underway; literature utilized to fill in gaps

Modeling


- Land Use and Carbon Scenario Simulator (LUCAS Model)
- State and transition model simulates carbon pools and fluxes under baseline and alternative scenario conditions

Valuation

- Interagency Working Group on Social Cost of Carbon
- Four discount rates, 50 year period

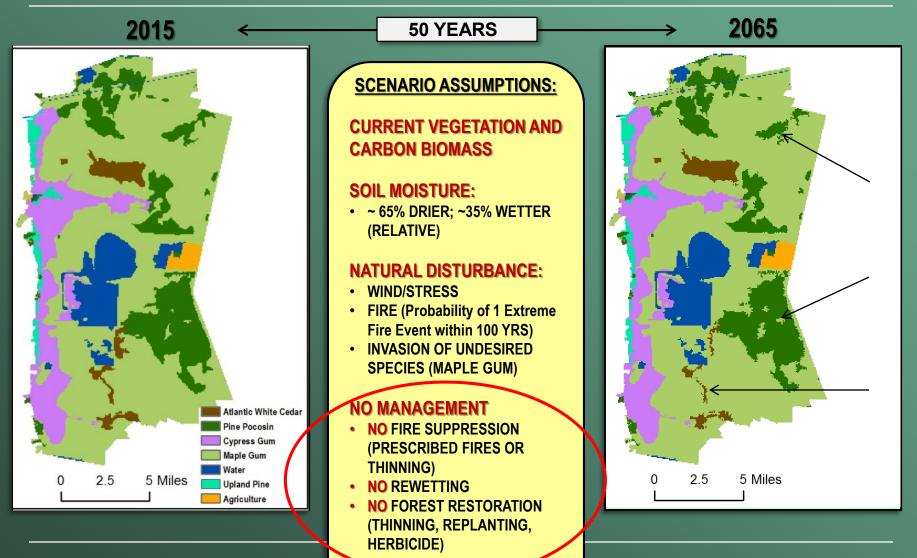


State-and-transition Model (ST-SIM)

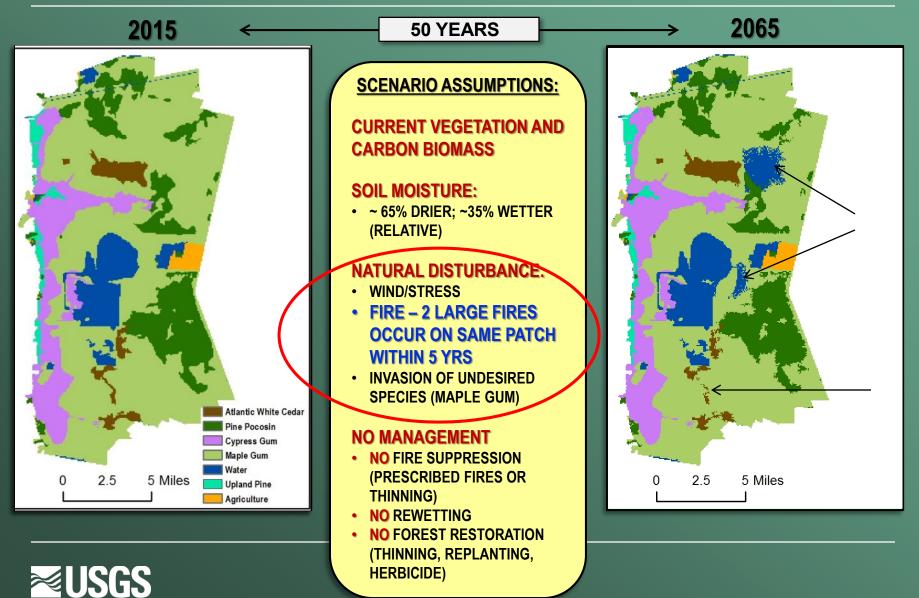
Scenario Development

Valuation

Year	5% Average	3% Average	2.5% Average	High Impact (95th Percentile at 3%)
2010	\$12	\$38	\$61	\$104
2015	\$13	\$44	\$68	\$127
2020	\$15	\$51	\$75	\$149
2025	\$17	\$56	\$82	\$167
2030	\$19	\$61	\$88	\$184
2035	\$22	\$67	\$94	\$203
2040	\$25	\$73	\$102	\$221
2045	\$28	\$77	\$108	\$238
2050	\$31	\$83	\$115	\$257
2060	\$44	\$96	\$127	\$293
Notes: original source is IWG 2016; values are escalated using CPI from 2007 to 2017. Values for 2060 are				


estimated based on rate of increase from 2040-2050.

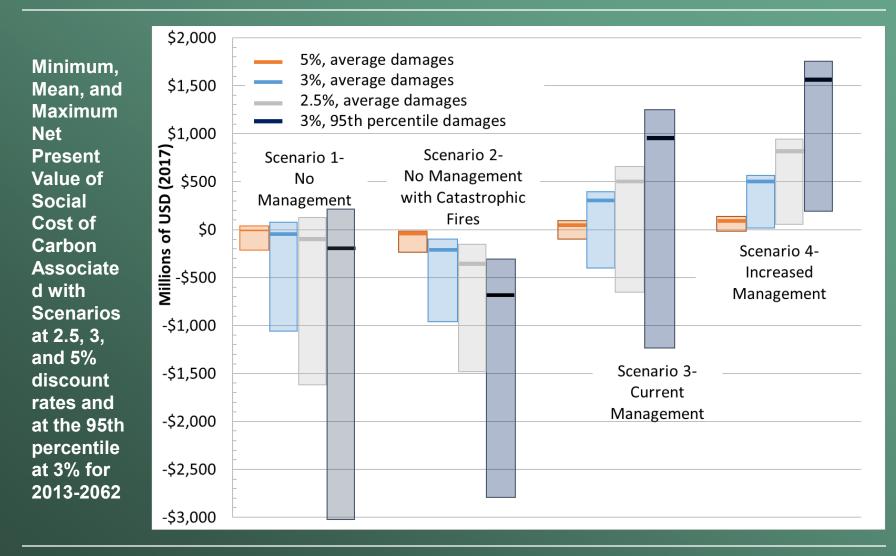
NPV = B0 + d1B1 + d2B2 + ... + dn - 1Bn - 1 + dnBn



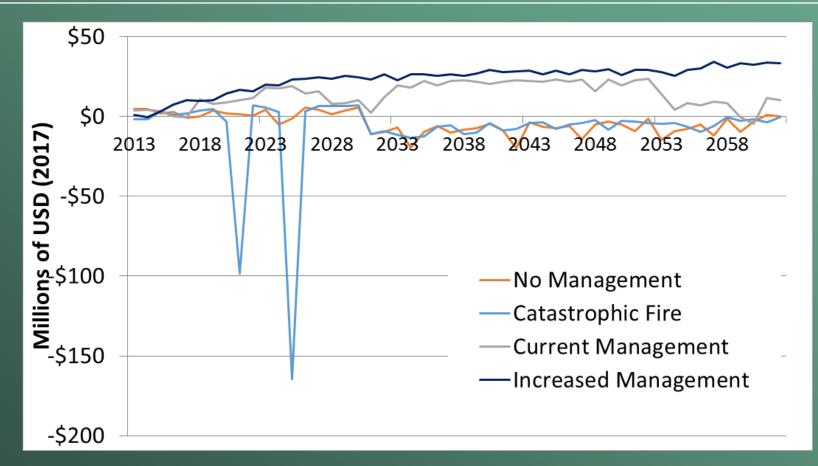
Scenario 1: Reference Conditions

≥USGS

Scenario 2: Extreme Fire Event


Results: Tons of CO₂ Sequestered

Range and Mean Total Carbon Sequestered (positive) or Emitted (negative) from 2013-2062. The range of total CO2 emissions for the entire simulation period is shown in orange with the mean represented in blue



Results: Net Present Value of CO₂ Sequestered

Results: Value of CO₂ Sequestered Over Time

Annual Value of Carbon Sequestration for Four Scenarios in GDS (at the 3% discount rate); note that values differ in the first year due to the incorporation of uncertainty in the model

Conclusions

- Management actions expected to influence GDS's capacity to sequester carbon
- Additional drivers also impact ecosystem services
- Managing for one service may have unintended consequences
- A portfolio approach increases information to decisionmakers on how management effects people
- See https://doi.org/10.1016/j.ecolecon.2018.08.002 for details on the carbon sequestration analysis
- See https://doi.org/10.1016/j.jenvman.2017.08.018 for details on benefits of fire mitigation

Acknowledgements

This work is a multi-disciplinary, multi-agency partnership. The project relies on the extensive expertise of all of the team members, with leadership and integration by Dr. Dianna Hogan.

Ecosystem Services Assessment and Carbon Monitoring Team				
Coordination Team	 FWS (John Schmerfeld, Sara Ward), USGS (Zhiliang Zhu, Brad Reed, Dianna Hogan), NWR managers (Chris Lowie, Fred Wurster, Howard Phillips), State Park (Joy Greenwood, Adam Carver), TNC (Christine Pickens, Chuck Peoples, Brian van Eerden) 			
Dianna Hogan	 Coordination and communications, ecosystem services analysis, model development, field research 			
Ken Krauss, Nicole Cormier, Rebecca Moss, Courtney Lee, Jamie Duberstein, Josh Salter, Laurel Gutenberg, Chris Wright	 Field research – carbon storage and flux 			
Judy Drexler	 Field and lab research – carbon storage in soils (peat) 			
Gary Speiran	 Field research – hydrologic measurements 			
Todd Hawbaker, Zhong Lu, John Qu, Laurel Gutenberg	Biomass and soil moisture measurements and fire characterization			
Emily Pindilli, Bryan Parthum	 Economics analysis, model development 			
Rachel Sleeter	ST-SIM model development			
Kim Angeli, Gary Fisher	Remote sensing			

Questions?